Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Configuration space in a product (1808.08894v1)

Published 27 Aug 2018 in math.AT

Abstract: Given a finite graph G and a topological space Z, the graphical configuration space Conf(G, Z) is the space of functions V(G) -> Z so that adjacent vertices map to distinct points. We provide a homotopy decomposition of Conf(G, X x Y) in terms of the graphical configuration spaces in X and Y individually. By way of application, we prove a stabilization result for homology of configuration space in X x Cp as p goes to infinity. We also compute the homology of Conf(K_3,T)/T, the space of ordered triples of distinct points in a torus T of rank r, where configurations are considered up to translation. In Section 2, we give an algorithm for computing homology of configuration space in a product of simplicial complexes. The method is applied to products of some sans-serif capital letters in Example 2.12.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.