Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SmartEAR: Smartwatch-based Unsupervised Learning for Multi-modal Signal Analysis in Opportunistic Sensing Framework (1808.06473v1)

Published 11 Aug 2018 in cs.CY

Abstract: Wrist-bands such as smartwatches have become an unobtrusive interface for collecting physiological and contextual data from users. Smartwatches are being used for smart healthcare, telecare, and wellness monitoring. In this paper, we used data collected from the AnEAR framework leveraging smartwatches to gather and store physiological data from patients in naturalistic settings. This data included temperature, galvanic skin response (GSR), acceleration, and heart rate (HR). In particular, we focused on HR and acceleration, as these two modalities are often correlated. Since the data was unlabeled we relied on unsupervised learning for multi-modal signal analysis. We propose using k-means clustering, GMM clustering, and Self-Organizing maps based on Neural Networks for group the multi-modal data into homogeneous clusters. This strategy helped in discovering latent structures in our data.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.