Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Sampling Using K-hop Random Walks for Heterogeneous Network Embedding (1808.04657v1)

Published 14 Aug 2018 in cs.SI

Abstract: Sampling a network is an important prerequisite for unsupervised network embedding. Further, random walk has widely been used for sampling in previous studies. Since random walk based sampling tends to traverse adjacent neighbors, it may not be suitable for heterogeneous network because in heterogeneous networks two adjacent nodes often belong to different types. Therefore, this paper proposes a K-hop random walk based sampling approach which includes a node in the sample list only if it is separated by K hops from the source node. We exploit the samples generated using K-hop random walker for network embedding using skip-gram model (word2vec). Thereafter, the performance of network embedding is evaluated on co-authorship prediction task in heterogeneous DBLP network. We compare the efficacy of network embedding exploiting proposed sampling approach with recently proposed best performing network embedding models namely, Metapath2vec and Node2vec. It is evident that the proposed sampling approach yields better quality of embeddings and out-performs baselines in majority of the cases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.