Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BiasedWalk: Biased Sampling for Representation Learning on Graphs (1809.02482v1)

Published 7 Sep 2018 in cs.LG, cs.SI, and stat.ML

Abstract: Network embedding algorithms are able to learn latent feature representations of nodes, transforming networks into lower dimensional vector representations. Typical key applications, which have effectively been addressed using network embeddings, include link prediction, multilabel classification and community detection. In this paper, we propose BiasedWalk, a scalable, unsupervised feature learning algorithm that is based on biased random walks to sample context information about each node in the network. Our random-walk based sampling can behave as Breath-First-Search (BFS) and Depth-First-Search (DFS) samplings with the goal to capture homophily and role equivalence between the nodes in the network. We have performed a detailed experimental evaluation comparing the performance of the proposed algorithm against various baseline methods, on several datasets and learning tasks. The experiment results show that the proposed method outperforms the baseline ones in most of the tasks and datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Duong Nguyen (31 papers)
  2. Fragkiskos D. Malliaros (35 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.