Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weight Learning in a Probabilistic Extension of Answer Set Programs (1808.04527v2)

Published 14 Aug 2018 in cs.AI

Abstract: LPMLN is a probabilistic extension of answer set programs with the weight scheme derived from that of Markov Logic. Previous work has shown how inference in LPMLN can be achieved. In this paper, we present the concept of weight learning in LPMLN and learning algorithms for LPMLN derived from those for Markov Logic. We also present a prototype implementation that uses answer set solvers for learning as well as some example domains that illustrate distinct features of LPMLN learning. Learning in LPMLN is in accordance with the stable model semantics, thereby it learns parameters for probabilistic extensions of knowledge-rich domains where answer set programming has shown to be useful but limited to the deterministic case, such as reachability analysis and reasoning about actions in dynamic domains. We also apply the method to learn the parameters for probabilistic abductive reasoning about actions.

Citations (15)

Summary

We haven't generated a summary for this paper yet.