Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing LPMLN Using ASP and MLN Solvers (1707.06325v3)

Published 19 Jul 2017 in cs.AI and cs.LO

Abstract: LPMLN is a recent addition to probabilistic logic programming languages. Its main idea is to overcome the rigid nature of the stable model semantics by assigning a weight to each rule in a way similar to Markov Logic is defined. We present two implementations of LPMLN, $\text{LPMLN2ASP}$ and $\text{LPMLN2MLN}$. System $\text{LPMLN2ASP}$ translates LPMLN programs into the input language of answer set solver $\text{CLINGO}$, and using weak constraints and stable model enumeration, it can compute most probable stable models as well as exact conditional and marginal probabilities. System $\text{LPMLN2MLN}$ translates LPMLN programs into the input language of Markov Logic solvers, such as $\text{ALCHEMY}$, $\text{TUFFY}$, and $\text{ROCKIT}$, and allows for performing approximate probabilistic inference on LPMLN programs. We also demonstrate the usefulness of the LPMLN systems for computing other languages, such as ProbLog and Pearl's Causal Models, that are shown to be translatable into LPMLN. (Under consideration for acceptance in TPLP)

Citations (36)

Summary

We haven't generated a summary for this paper yet.