Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eliminating Unstable Tests in Floating-Point Programs (1808.04289v2)

Published 13 Aug 2018 in cs.PL and cs.LO

Abstract: Round-off errors arising from the difference between real numbers and their floating-point representation cause the control flow of conditional floating-point statements to deviate from the ideal flow of the real-number computation. This problem, which is called test instability, may result in a significant difference between the computation of a floating-point program and the expected output in real arithmetic. In this paper, a formally proven program transformation is proposed to detect and correct the effects of unstable tests. The output of this transformation is a floating-point program that is guaranteed to return either the result of the original floating-point program when it can be assured that both its real and its floating-point flows agree or a warning when these flows may diverge. The proposed approach is illustrated with the transformation of the core computation of a polygon containment algorithm developed at NASA that is used in a geofencing system for unmanned aircraft systems.

Citations (15)

Summary

We haven't generated a summary for this paper yet.