Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Binary Floating-Point Representations for Constraint Propagation: The Complete Unabridged Version (1308.3847v4)

Published 18 Aug 2013 in cs.AI and cs.SE

Abstract: Floating-point computations are quickly finding their way in the design of safety- and mission-critical systems, despite the fact that designing floating-point algorithms is significantly more difficult than designing integer algorithms. For this reason, verification and validation of floating-point computations is a hot research topic. An important verification technique, especially in some industrial sectors, is testing. However, generating test data for floating-point intensive programs proved to be a challenging problem. Existing approaches usually resort to random or search-based test data generation, but without symbolic reasoning it is almost impossible to generate test inputs that execute complex paths controlled by floating-point computations. Moreover, as constraint solvers over the reals or the rationals do not natively support the handling of rounding errors, the need arises for efficient constraint solvers over floating-point domains. In this paper, we present and fully justify improved algorithms for the propagation of arithmetic IEEE 754 binary floating-point constraints. The key point of these algorithms is a generalization of an idea by B. Marre and C. Michel that exploits a property of the representation of floating-point numbers.

Citations (10)

Summary

We haven't generated a summary for this paper yet.