Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

The bipartite $K_{2,2}$-free process and bipartite Ramsey number $b(2, t)$ (1808.02139v1)

Published 6 Aug 2018 in math.CO

Abstract: The bipartite Ramsey number $b(s,t)$ is the smallest integer $n$ such that every blue-red edge coloring of $K_{n,n}$ contains either a blue $K_{s,s}$ or a red $K_{t,t}$. In the bipartite $K_{2,2}$-free process, we begin with an empty graph on vertex set $X\cup Y$, $|X|=|Y|=n$. At each step, a random edge from $X\times Y$ is added under the restriction that no $K_{2,2}$ is formed. This step is repeated until no more edges can be added. In this note, we analyze this process and show that the resulting graph witnesses that $b(2,t) =\Omega \left(t{3/2}/\log t \right)$, thereby improving the best known lower bound.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.