Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Linear compartmental models: input-output equations and operations that preserve identifiability (1808.00335v2)

Published 1 Aug 2018 in math.AG, math.DS, and q-bio.MN

Abstract: This work focuses on the question of how identifiability of a mathematical model, that is, whether parameters can be recovered from data, is related to identifiability of its submodels. We look specifically at linear compartmental models and investigate when identifiability is preserved after adding or removing model components. In particular, we examine whether identifiability is preserved when an input, output, edge, or leak is added or deleted. Our approach, via differential algebra, is to analyze specific input-output equations of a model and the Jacobian of the associated coefficient map. We clarify a prior determinantal formula for these equations, and then use it to prove that, under some hypotheses, a model's input-output equations can be understood in terms of certain submodels we call "output-reachable". Our proofs use algebraic and combinatorial techniques.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.