Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Maximum Margin Metric Learning Over Discriminative Nullspace for Person Re-identification (1807.10908v1)

Published 28 Jul 2018 in cs.CV

Abstract: In this paper we propose a novel metric learning framework called Nullspace Kernel Maximum Margin Metric Learning (NK3ML) which efficiently addresses the small sample size (SSS) problem inherent in person re-identification and offers a significant performance gain over existing state-of-the-art methods. Taking advantage of the very high dimensionality of the feature space, the metric is learned using a maximum margin criterion (MMC) over a discriminative nullspace where all training sample points of a given class map onto a single point, minimizing the within class scatter. A kernel version of MMC is used to obtain a better between class separation. Extensive experiments on four challenging benchmark datasets for person re-identification demonstrate that the proposed algorithm outperforms all existing methods. We obtain 99.8% rank-1 accuracy on the most widely accepted and challenging dataset VIPeR, compared to the previous state of the art being only 63.92%.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.