Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Backflow Transformations via Neural Networks for Quantum Many-Body Wave-Functions (1807.10770v2)

Published 27 Jul 2018 in cond-mat.dis-nn, cond-mat.str-el, and physics.comp-ph

Abstract: Obtaining an accurate ground state wave function is one of the great challenges in the quantum many-body problem. In this paper, we propose a new class of wave functions, neural network backflow (NNB). The backflow approach, pioneered originally by Feynman, adds correlation to a mean-field ground state by transforming the single-particle orbitals in a configuration-dependent way. NNB uses a feed-forward neural network to find the optimal transformation. NNB directly dresses a mean-field state, can be systematically improved and directly alters the sign structure of the wave-function. It generalizes the standard backflow which we show how to explicitly represent as a NNB. We benchmark the NNB on a Hubbard model at intermediate doping finding that it significantly decreases the relative error, restores the symmetry of both observables and single-particle orbitals, and decreases the double-occupancy density. Finally, we illustrate interesting patterns in the weights and bias of the optimized neural network.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)