Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Cluster expansions for Gibbs point processes (1807.10725v2)

Published 27 Jul 2018 in math.PR, math-ph, and math.MP

Abstract: We provide a sufficient condition for the uniqueness in distribution of Gibbs point processes with non-negative pairwise interaction, together with convergent expansions of the log-Laplace functional, factorial moment densities and factorial cumulant densities (correlation functions and truncated correlation functions). The criterion is a continuum version of a convergence condition by Fern{\'a}ndez and Procacci (2007), the proof is based on the Kirkwood-Salsburg integral equations and is close in spirit to the approach by Bissacot, Fern{\'a}ndez and Procacci (2010). In addition, we provide formulas for cumulants of double stochastic integrals with respect to Poisson random measures (not compensated) in terms of multigraphs and pairs of partitions, explaining how to go from cluster expansions to some diagrammatic expansions (Peccati and Taqqu, 2011). We also discuss relations with generating functions for trees, branching processes, Boolean percolation and the random connection model. The presentation is self-contained and requires no preliminary knowledge of cluster expansions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)