Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Decay estimates for evolution equations with classical and fractional time-derivatives (1807.10041v1)

Published 26 Jul 2018 in math.AP

Abstract: Using energy methods, we prove some power-law and exponential decay estimates for classical and nonlocal evolutionary equations. The results obtained are framed into a general setting, which comprise, among the others, equations involving both standard and Caputo time-derivative, complex valued magnetic operators, fractional porous media equations and nonlocal Kirchhoff operators. Both local and fractional space diffusion are taken into account, possibly in a nonlinear setting. The different quantitative behaviors, which distinguish polynomial decays from exponential ones, depend heavily on the structure of the time-derivative involved in the equation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.