Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Asymptotic properties for second-order linear evolution problems with fractional laplacian operators (1802.01112v1)

Published 4 Feb 2018 in math.AP

Abstract: In this work we study the asymptotic behavior of solutions for a general linear second-order evolution differential equation in time with fractional Laplace operators in $\mathbb{R}n$. We obtain improved decay estimates with less demand on the initial data when compared to previous results in the literature. In certain cases, we observe that the dissipative structure of the equation is of regularity-loss type. Due to that special structure, to get decay estimates in high frequency region in the Fourier space it is necessary to impose additional regularity on the initial data to obtain the same decay estimates as in low frequency region. The results obtained in this work can be applied to several initial value problems associated to second-order equations, as for example, wave equation, plate equation, IBq, among others.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.