Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal estimation of Gaussian mixtures via denoised method of moments (1807.07237v2)

Published 19 Jul 2018 in math.ST and stat.TH

Abstract: The Method of Moments [Pea94] is one of the most widely used methods in statistics for parameter estimation, by means of solving the system of equations that match the population and estimated moments. However, in practice and especially for the important case of mixture models, one frequently needs to contend with the difficulties of non-existence or non-uniqueness of statistically meaningful solutions, as well as the high computational cost of solving large polynomial systems. Moreover, theoretical analysis of the method of moments are mainly confined to asymptotic normality style of results established under strong assumptions. This paper considers estimating a $k$-component Gaussian location mixture with a common (possibly unknown) variance parameter. To overcome the aforementioned theoretic and algorithmic hurdles, a crucial step is to denoise the moment estimates by projecting to the truncated moment space (via semidefinite programming) before solving the method of moments equations. Not only does this regularization ensures existence and uniqueness of solutions, it also yields fast solvers by means of Gauss quadrature. Furthermore, by proving new moment comparison theorems in the Wasserstein distance via polynomial interpolation and majorization techniques, we establish the statistical guarantees and adaptive optimality of the proposed procedure, as well as oracle inequality in misspecified models. These results can also be viewed as provable algorithms for Generalized Method of Moments [Han82] which involves non-convex optimization and lacks theoretical guarantees.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)