Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Generalized Lasso for Sub-gaussian Measurements with Dithered Quantization (1807.06976v1)

Published 18 Jul 2018 in cs.IT, eess.SP, math.IT, math.ST, and stat.TH

Abstract: In the problem of structured signal recovery from high-dimensional linear observations, it is commonly assumed that full-precision measurements are available. Under this assumption, the recovery performance of the popular Generalized Lasso (G-Lasso) is by now well-established. In this paper, we extend these types of results to the practically relevant settings with quantized measurements. We study two extremes of the quantization schemes, namely, uniform and one-bit quantization; the former imposes no limit on the number of quantization bits, while the second only allows for one bit. In the presence of a uniform dithering signal and when measurement vectors are sub-gaussian, we show that the same algorithm (i.e., the G-Lasso) has favorable recovery guarantees for both uniform and one-bit quantization schemes. Our theoretical results, shed light on the appropriate choice of the range of values of the dithering signal and accurately capture the error dependence on the problem parameters. For example, our error analysis shows that the G-Lasso with one-bit uniformly dithered measurements leads to only a logarithmic rate loss compared to the full-precision measurements.

Citations (29)

Summary

We haven't generated a summary for this paper yet.