Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-Bit Quantization Design and Adaptive Methods for Compressed Sensing (1304.1969v2)

Published 7 Apr 2013 in cs.IT and math.IT

Abstract: There have been a number of studies on sparse signal recovery from one-bit quantized measurements. Nevertheless, little attention has been paid to the choice of the quantization thresholds and its impact on the signal recovery performance. This paper examines the problem of one-bit quantizer design for sparse signal recovery. Our analysis shows that the magnitude ambiguity that ever plagues conventional one-bit compressed sensing methods can be resolved, and an arbitrarily small reconstruction error can be achieved by setting the quantization thresholds close enough to the original data samples without being quantized. Note that unquantized data samples are unaccessible in practice. To overcome this difficulty, we propose an adaptive quantization method that adaptively adjusts the quantization thresholds in a way such that the thresholds converges to the optimal thresholds. Numerical results are illustrated to collaborate our theoretical results and the effectiveness of the proposed algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.