Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

The arc-topology (1807.04725v4)

Published 12 Jul 2018 in math.AG and math.KT

Abstract: We study a Grothendieck topology on schemes which we call the $\mathrm{arc}$-topology. This topology is a refinement of the $v$-topology (the pro-version of Voevodsky's $h$-topology) where covers are tested via rank $\leq 1$ valuation rings. Functors which are $\mathrm{arc}$-sheaves are forced to satisfy a variety of glueing conditions such as excision in the sense of algebraic $K$-theory. We show that \'etale cohomology is an $\mathrm{arc}$-sheaf and deduce various pullback squares in \'etale cohomology. Using $\mathrm{arc}$-descent, we reprove the Gabber-Huber affine analog of proper base change (in a large class of examples), as well as the Fujiwara-Gabber base change theorem on the \'etale cohomology of the complement of a henselian pair. As a final application we prove a rigid analytic version of the Artin-Grothendieck vanishing theorem from SGA4, extending results of Hansen.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube