Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Factor models with many assets: strong factors, weak factors, and the two-pass procedure (1807.04094v2)

Published 11 Jul 2018 in econ.EM

Abstract: This paper re-examines the problem of estimating risk premia in linear factor pricing models. Typically, the data used in the empirical literature are characterized by weakness of some pricing factors, strong cross-sectional dependence in the errors, and (moderately) high cross-sectional dimensionality. Using an asymptotic framework where the number of assets/portfolios grows with the time span of the data while the risk exposures of weak factors are local-to-zero, we show that the conventional two-pass estimation procedure delivers inconsistent estimates of the risk premia. We propose a new estimation procedure based on sample-splitting instrumental variables regression. The proposed estimator of risk premia is robust to weak included factors and to the presence of strong unaccounted cross-sectional error dependence. We derive the many-asset weak factor asymptotic distribution of the proposed estimator, show how to construct its standard errors, verify its performance in simulations, and revisit some empirical studies.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube