Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Discovering Interesting Plots in Production Yield Data Analytics (1807.03920v1)

Published 11 Jul 2018 in cs.LG and stat.ML

Abstract: An analytic process is iterative between two agents, an analyst and an analytic toolbox. Each iteration comprises three main steps: preparing a dataset, running an analytic tool, and evaluating the result, where dataset preparation and result evaluation, conducted by the analyst, are largely domain-knowledge driven. In this work, the focus is on automating the result evaluation step. The underlying problem is to identify plots that are deemed interesting by an analyst. We propose a methodology to learn such analyst's intent based on Generative Adversarial Networks (GANs) and demonstrate its applications in the context of production yield optimization using data collected from several product lines.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube