Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Tensor networks as path integral geometry (1807.02501v1)

Published 6 Jul 2018 in cond-mat.str-el and hep-lat

Abstract: In the context of a quantum critical spin chain whose low energy physics corresponds to a conformal field theory (CFT), it was recently demonstrated [A. Milsted G. Vidal, arXiv:1805.12524] that certain classes of tensor networks used for numerically describing the ground state of the spin chain can also be used to implement (discrete, approximate versions of) conformal transformations on the lattice. In the continuum, the same conformal transformations can be implemented through a CFT path integral on some curved spacetime. Based on this observation, in this paper we propose to interpret the tensor networks themselves as a path integrals on curved spacetime. This perspective assigns (a discrete, approximate version of) a geometry to the tensor network, namely that of the underlying curved spacetime.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

Tensor Networks as Path Integral Geometry

The research paper "Tensor networks as path integral geometry" by Ashley Milsted and Guifre Vidal introduces a conceptually significant framework for interpreting tensor networks, particularly in relation to quantum critical spin chains and conformal field theory (CFT). The core proposition is to view tensor networks not merely as computational tools for ground state approximation, but as geometrical entities embodying a discrete version of CFT path integrals on curved spacetime. This perspective suggests a novel way to assign geometrical meaning to tensor networks, which is particularly relevant in theoretical physics.

Significance and Methodology

Tensor networks have been established as efficient structures for representing quantum many-body states and are critical in various fields, including statistical mechanics and quantum gravity. They are particularly important in the paper of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, where they model entanglement structures similar to those expected in holographic theories. The authors suggest that tensor networks can be used to implement discrete analogs of conformal transformations on lattices, analogous to how these transformations would occur in continuous spacetime via CFT path integrals.

The paper proposes assigning geometry to tensor networks based on two principles:

  1. Compatibility with Path Integral: The geometrical interpretation of a tensor network should be such that the CFT path integral performed on it results in the same linear map as that implemented by the network itself.
  2. Constant Lattice Spacing: The geometry assignment includes maintaining a constant proper distance between neighboring sites in the lattice, which corresponds to the tensor network.

These rules aim to bridge the discrete nature of tensor networks with the continuous geometry they attempt to simulate.

Numerical Results and Interpretations

A key numerical result is the demonstration of tensor networks as implementing conformal maps on the low-energy states of quantum spin chains. The paper explores how euclideon, disentanglers, and isometries can be utilized to transform tensor networks into representations of discrete Euclidean path integrals, effectively assigning them a geometric structure akin to that of a curved spacetime.

By refining the lattice spacing `epsilonepsilon`, the authors illustrate how this approach allows a more precise approximation of continuous geometries, offering improved fidelity in representing CFT path integrals. These findings are computationally validated through extensive simulation on critical spin chains, showcasing convergence behaviors as refinements are made.

Implications and Future Developments

This interpretation extends our understanding of tensor networks, offering a pathway to utilize them in modeling geometries consistent with CFTs and potentially broader quantum field theories. This geometric viewpoint could significantly influence how tensor networks are used in practice, especially in theoretical and computational models of quantum spacetime.

In terms of future work, this framework could be expanded to address spacetimes with Lorentzian rather than Euclidean signature by incorporating different tensor structures, such as lorentzions instead of euclideons. The methodology also offers potential insights into tensor network models simulating massive quantum field theories, suggesting preparatory directions for further research.

Overall, Milsted and Vidal's work enriches the dialogue between discrete computational models and continuous geometric theories, reinforcing the promise of tensor networks as a fundamental tool in theoretical physics.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com