Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fusion categories for affine vertex algebras at admissible levels (1807.00415v1)

Published 1 Jul 2018 in math.QA, math.CT, and math.RT

Abstract: The main result is that the category of ordinary modules of an affine vertex operator algebra of a simply laced Lie algebra at admissible level is rigid and thus a braided fusion category. If the level satisfies a certain coprime property then it is even a modular tensor category. In all cases open Hopf links coincide with the corresponding normalized S-matrix entries of torus one-point functions. This is interpreted as a Verlinde formula beyond rational vertex operator algebras. A preparatory Theorem is a convenient formula for the fusion rules of rational principal W-algebras of any type.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)