Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inner approximating the completely positive cone via the cone of scaled diagonally dominant matrices (1807.00379v2)

Published 1 Jul 2018 in math.OC

Abstract: Motivated by the expressive power of completely positive programming to encode hard optimization problems, many approximation schemes for the completely positive cone have been proposed and successfully used. Most schemes are based on outer approximations, with the only inner approximations available being linear programming based methods proposed by Bundfuss and D\"ur and also Y{\i}ld{\i}r{\i}m, and a semidefinite programming based method proposed by Lasserre. In this paper, we propose the use of the cone of nonnegative scaled diagonally dominant matrices as a natural inner approximation to the completely positive cone. Using projections of this cone we derive new graph-based second-order cone approximation schemes for completely positive programming, leading to both uniform and problem-dependent hierarchies. This offers a compromise between the expressive power of semidefinite programming and the speed of linear programming based approaches. Numerical results on random problems, standard quadratic programs and the stable set problem are presented to illustrate the effectiveness of our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.