Modular Covariants of Cyclic Groups of Order p (1806.11024v3)
Abstract: Let $G$ be a cyclic group of order $p$, let $k$ be a field of characteristic $p$, and let $V, W$ be $kG$-modules. We study the modules of covariants $k[V,W]G = (S(V*) \otimes W)G$. For $V$ indecomposable with dimension 2, and $W$ an arbitrary indecomposable module, we show $k[V,W]G$ is a free $k[V]G$-module (recovering a result of Broer and Chuai) and we give an explicit set of covariants generating $k[V,W]G$ freely over $k[V]G$. For $V$ indecomposable with dimension 3 and $W$ an indecomposable module with dimension at most 5, we show that $k[V,W]G$ is a Cohen-Macaulay $k[V]G$-module (again recovering a result of Broer and Chuai) and we give an explicit set of covariants which generate $k[V,W]G$ freely over a homogeneous system of parameters for $k[V]G$. We conjecture that a similar set of covariants generates $k[V,W]G$ freely over a homogeneous system of parameters for $k[V]G$ when $W$ has arbitrary dimension.