Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally finite derivations and modular coinvariants (1605.06363v1)

Published 20 May 2016 in math.AC

Abstract: We consider a finite dimensional $\kk G$-module $V$ of a $p$-group $G$ over a field $\kk$ of characteristic $p$. We describe a generating set for the corresponding Hilbert Ideal. In case $G$ is cyclic this yields that the algebra $\kk[V]_G$ of coinvariants is a free module over its subalgebra generated by $\kk G$-module generators of $V*$. This subalgebra is a quotient of a polynomial ring by pure powers of its variables. The coinvariant ring was known to have this property only when $G$ was cyclic of prime order, \cite{SezerCoinv}. In addition, we show that if $G$ is the Klein 4-group and $V$ does not contain an indecomposable summand isomorphic to the regular module, then the Hilbert Ideal is a complete intersection, extending a result of the second author and R. J. Shank \cite{SezerShank}.

Summary

We haven't generated a summary for this paper yet.