Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

An agent-based framework of active matter with applications in biological and social systems (1806.10829v2)

Published 28 Jun 2018 in cond-mat.soft, nlin.AO, physics.soc-ph, and q-bio.QM

Abstract: Active matter, as other types of self-organizing systems, relies on the take-up of energy that can be used for different actions, such as active motion or structure formation. Here we provide an agent-based framework to model these processes at different levels of organization, physical, biological and social, using the same dynamic approach. Driving variables describe the take-up, storage and conversion of energy, whereas driven variables describe the energy consuming activities. The stochastic dynamics of both types of variables follow a modified Langevin equation. Additional non-linear functions allow to encode system-specific hypotheses about the relation between driving and driven variables. To demonstrate the applicability of this framework, we recast a number of existing models of Brownian agents and Active Brownian Particles. Specifically, active motion, clustering and self-wiring of networks based on chemotactic interactions, online communication and polarization of opinions based on emotional influence are discussed. The framework allows to obtain critical parameters for active motion and the emergence of collective phenomena. This highlights the role of energy take-up and dissipation in obtaining different dynamic regimes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)