Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized compressible flows and solutions of the H(div) geodesic problem (1806.10825v3)

Published 28 Jun 2018 in math.AP, cs.NA, and math.NA

Abstract: We study the geodesic problem on the group of diffeomorphism of a domain M$\subset$Rd, equipped with the H(div) metric. The geodesic equations coincide with the Camassa-Holm equation when d=1, and represent one of its possible multi-dimensional generalizations when d>1. We propose a relaxation {`a} la Brenier of this problem, in which solutions are represented as probability measures on the space of continuous paths on the cone over M. We use this relaxation to prove that smooth H(div) geodesics are globally length minimizing for short times. We also prove that there exists a unique pressure field associated to solutions of our relaxation. Finally, we propose a numerical scheme to construct generalized solutions on the cone and present some numerical results illustrating the relation between the generalized Camassa-Holm and incompressible Euler solutions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.