Papers
Topics
Authors
Recent
2000 character limit reached

Divergence-free tangential finite element methods for incompressible flows on surfaces

Published 13 Sep 2019 in physics.comp-ph, cs.NA, and math.NA | (1909.06229v2)

Abstract: In this work we consider the numerical solution of incompressible flows on two-dimensional manifolds. Whereas the compatibility demands of the velocity and the pressure spaces are known from the flat case one further has to deal with the approximation of a velocity field that lies only in the tangential space of the given geometry. Abandoning $H1$-conformity allows us to construct finite elements which are -- due to an application of the Piola transformation -- exactly tangential. To reintroduce continuity (in a weak sense) we make use of (hybrid) discontinuous Galerkin techniques. To further improve this approach, $H(\operatorname{div}_{\Gamma})$-conforming finite elements can be used to obtain exactly divergence-free velocity solutions. We present several new finite element discretizations. On a number of numerical examples we examine and compare their qualitative properties and accuracy.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.