Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Efficient representation and approximation of model predictive control laws via deep learning (1806.10644v3)

Published 27 Jun 2018 in math.OC

Abstract: We show that artificial neural networks with rectifier units as activation functions can exactly represent the piecewise affine function that results from the formulation of model predictive control of linear time-invariant systems. The choice of deep neural networks is particularly interesting as they can represent exponentially many more affine regions compared to networks with only one hidden layer. We provide theoretical bounds on the minimum number of hidden layers and neurons per layer that a neural network should have to exactly represent a given model predictive control law. The proposed approach has a strong potential as an approximation method of predictive control laws, leading to better approximation quality and significantly smaller memory requirements than previous approaches, as we illustrate via simulation examples. We also suggest different alternatives to correct or quantify the approximation error. Since the online evaluation of neural networks is extremely simple, the approximated controllers can be deployed on low-power embedded devices with small storage capacity, enabling the implementation of advanced decision-making strategies for complex cyber-physical systems with limited computing capabilities.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.