A combinatorial-topological shape category for polygraphs (1806.10353v2)
Abstract: We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes, cubes, oriented simplices, and a large sub-class of opetopes, and are closed under lax Gray products and joins. We define constructible polygraphs to be presheaves on a category of atoms and inclusions, and extend the monoidal structures. We show that constructible directed complexes are a well-behaved subclass of Steiner's directed complexes, which we use to define a realisation functor from constructible polygraphs to omega-categories. We prove that the realisation of a constructible polygraph is a polygraph in restricted cases, and in all cases conditionally to a conjecture. Finally, we define the geometric realisation of a constructible polygraph, and prove that it is a CW complex with one cell for each of its elements.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.