Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance (1806.10171v5)

Published 26 Jun 2018 in eess.SP and cs.CV

Abstract: Sparse coding refers to the pursuit of the sparsest representation of a signal in a typically overcomplete dictionary. From a Bayesian perspective, sparse coding provides a Maximum a Posteriori (MAP) estimate of the unknown vector under a sparse prior. In this work, we suggest enhancing the performance of sparse coding algorithms by a deliberate and controlled contamination of the input with random noise, a phenomenon known as stochastic resonance. The proposed method adds controlled noise to the input and estimates a sparse representation from the perturbed signal. A set of such solutions is then obtained by projecting the original input signal onto the recovered set of supports. We present two variants of the described method, which differ in their final step. The first is a provably convergent approximation to the Minimum Mean Square Error (MMSE) estimator, relying on the generative model and applying a weighted average over the recovered solutions. The second is a relaxed variant of the former that simply applies an empirical mean. We show that both methods provide a computationally efficient approximation to the MMSE estimator, which is typically intractable to compute. We demonstrate our findings empirically and provide a theoretical analysis of our method under several different cases.

Citations (14)

Summary

We haven't generated a summary for this paper yet.