Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crowd Counting with Density Adaption Networks (1806.10040v1)

Published 26 Jun 2018 in cs.CV

Abstract: Crowd counting is one of the core tasks in various surveillance applications. A practical system involves estimating accurate head counts in dynamic scenarios under different lightning, camera perspective and occlusion states. Previous approaches estimate head counts despite that they can vary dramatically in different density settings; the crowd is often unevenly distributed and the results are therefore unsatisfactory. In this paper, we propose a lightweight deep learning framework that can automatically estimate the crowd density level and adaptively choose between different counter networks that are explicitly trained for different density domains. Experiments on two recent crowd counting datasets, UCF_CC_50 and ShanghaiTech, show that the proposed mechanism achieves promising improvements over state-of-the-art methods. Moreover, runtime speed is 20 FPS on a single GPU.

Citations (10)

Summary

We haven't generated a summary for this paper yet.