Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Scenario Discovery for Crowd Counting (1812.02393v2)

Published 6 Dec 2018 in cs.CV

Abstract: Crowd counting, i.e., estimation number of the pedestrian in crowd images, is emerging as an important research problem with the public security applications. A key component for the crowd counting systems is the construction of counting models which are robust to various scenarios under facts such as camera perspective and physical barriers. In this paper, we present an adaptive scenario discovery framework for crowd counting. The system is structured with two parallel pathways that are trained with different sizes of the receptive field to represent different scales and crowd densities. After ensuring that these components are present in the proper geometric configuration, a third branch is designed to adaptively recalibrate the pathway-wise responses by discovering and modeling the dynamic scenarios implicitly. Our system is able to represent highly variable crowd images and achieves state-of-the-art results in two challenging benchmarks.

Citations (46)

Summary

We haven't generated a summary for this paper yet.