Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Explicit black hole solutions in higher-derivative gravity (1806.08209v1)

Published 21 Jun 2018 in gr-qc and hep-th

Abstract: We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of the Bach tensor on the horizon. When this additional "non-Schwarzschild parameter" is set to zero the Bach tensor vanishes everywhere and the "Schwa-Bach" solution reduces to the standard Schwarzschild metric of general relativity. Compared with previous studies, which were mainly based on numerical integration of a complicated form of field equations, the new form of the metric enables us to easily investigate geometrical and physical properties of these black holes, such as specific tidal effects on test particles, caused by the presence of the Bach tensor, as well as fundamental thermodynamical quantities.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper presents the derivation of explicit Schwarzschild–Bach black hole solutions in Einstein-Weyl theory, introducing a non-Schwarzschild parameter.
  • The non-zero Bach tensor in these solutions yields distinct tidal effects and thermodynamic properties compared to standard Schwarzschild black holes.
  • Thermodynamic analysis reveals deviations from classic GR relations, and geodesic deviation equations suggest potential observational methods to distinguish these solutions.

Analysis of Explicit Black Hole Solutions in Higher-Derivative Gravity

This essay discusses a paper that presents explicit black hole solutions within the framework of higher-derivative gravity, focusing on the Einstein-Weyl theory. The research builds upon extending Einstein's General Relativity (GR) by incorporating higher-order curvature terms, specifically those involving the Weyl tensor and the Bach tensor, into the action. The motivation for this extension stems from the limitations of GR in accounting for quantum effects, thus seeking a unified theory of quantum gravity.

Key Contributions

The authors derive the metric for a complete family of spherically symmetric Schwarzschild–Bach black holes in Einstein-Weyl theory, representing a major advancement over previous numerical solutions. A significant outcome is the identification of a "non-Schwarzschild parameter" that further characterizes these spacetimes. This parameter directly relates to the Bach tensor value on the black hole horizon. Notably, when this parameter is zero, the solution collapses to the classic Schwarzschild metric indicative of standard GR, showcasing a solution also to the quadratic gravity field equations.

Numerical and Theoretical Insights

  • Form of the Metric: By expressing the metric in a form conformal to type D direct-product Kundt geometries, the authors simplify the investigation of geometrical and physical properties of these black holes.
  • Field Equations and Solutions: The solution process translates the problem into finding power series solutions of the two governing field equations derived from the Einstein-Weyl theory. The paper explicitly outlines the series form for the metric functions, highlighting the impact of the additional parameters involved.
  • Implications of the Bach Tensor: The non-Schwarzschild solutions feature non-zero Bach tensors, providing distinct physical and geometrical characteristics from the conventional Schwarzschild solutions. The findings highlight specific tidal effects and thermodynamic properties caused by these corrections.

Thermodynamics and Observational Consequences

The thermodynamic analysis of the Schwarzschild-Bach black holes yielded expressions for horizon area, temperature, and entropy. Interestingly, the results demonstrate deviations from the classic relations observed in GR, particularly in the entropy formulation, due to the influence of the Bach tensor. These deviations are essential, especially for small black holes—encouraging further exploration of their astrophysical implications.

Additionally, the paper discusses the potential observational differences between Schwarzschild and Schwa-Bach black holes. One of the notable distinctions derived is in the geodesic deviation equations, which reveal characteristic effects attributable to the Bach tensor not present in purely Einsteinian black holes. This insight opens a pathway for empirically distinguishing between theories through precise measurements in the vicinity of black holes.

Future Perspectives

This work lays a foundational framework for exploring solutions analogous to Schwarzschild-Bach black holes under varying conditions like the presence of a cosmological constant. There is potential for further studies on the astrophysical implications, such as orbital dynamics or gravitational lensing, which could alert observers to the presence of particular higher-derivative corrections.

Conclusively, this research provides significant theoretical exploration and direction in the paper of higher-derivative gravity and enriches our understanding of possible black hole configurations beyond the limits of Einstein’s General Relativity.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com