Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Long-time large deviations for the multi-asset Wishart stochastic volatility model and option pricing (1806.06883v1)

Published 18 Jun 2018 in q-fin.PR and q-fin.MF

Abstract: We prove a large deviations principle for the class of multidimensional affine stochastic volatility models considered in (Gourieroux, C. and Sufana, R., J. Bus. Econ. Stat., 28(3), 2010), where the volatility matrix is modelled by a Wishart process. This class extends the very popular Heston model to the multivariate setting, thus allowing to model the joint behaviour of a basket of stocks or several interest rates. We then use the large deviation principle to obtain an asymptotic approximation for the implied volatility of basket options and to develop an asymptotically optimal importance sampling algorithm, to reduce the number of simulations when using Monte-Carlo methods to price derivatives.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.