Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A numerical method for oscillatory integrals with coalescing saddle points (1806.06549v2)

Published 18 Jun 2018 in math.NA and cs.NA

Abstract: The value of a highly oscillatory integral is typically determined asymptotically by the behaviour of the integrand near a small number of critical points. These include the endpoints of the integration domain and the so-called stationary points or saddle points -- roots of the derivative of the phase of the integrand -- where the integrand is locally non-oscillatory. Modern methods for highly oscillatory quadrature exhibit numerical issues when two such saddle points coalesce. On the other hand, integrals with coalescing saddle points are a classical topic in asymptotic analysis, where they give rise to uniform asymptotic expansions in terms of the Airy function. In this paper we construct Gaussian quadrature rules that remain uniformly accurate when two saddle points coalesce. These rules are based on orthogonal polynomials in the complex plane. We analyze these polynomials, prove their existence for even degrees, and describe an accurate and efficient numerical scheme for the evaluation of oscillatory integrals with coalescing saddle points.

Citations (7)

Summary

We haven't generated a summary for this paper yet.