Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complex generalized Gauss-Radau quadrature rules for Hankel transforms of integer order (2403.19328v1)

Published 28 Mar 2024 in math.NA, cs.NA, and math.CA

Abstract: Complex Gaussian quadrature rules for oscillatory integral transforms have the advantage that they can achieve optimal asymptotic order. However, their existence for Hankel transform can only be guaranteed when the order of the transform belongs to $[0,1/2]$. In this paper we consider the construction of generalized Gauss-Radau quadrature rules for Hankel transform. We show that, if adding certain value and derivative information at the left endpoint, then complex generalized Gauss-Radau quadrature rules for Hankel transform of integer order can be constructed with theoretical guarantees. Orthogonal polynomials that are closely related to such quadrature rules are investigated and their existence for even degrees is proved. Numerical experiments are presented to confirm our findings.

Summary

We haven't generated a summary for this paper yet.