Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of BEM-Type Channel Estimation Techniques for 5G Multicarrier Systems (1806.06480v1)

Published 18 Jun 2018 in cs.IT and math.IT

Abstract: In this paper, we investigate channel estimation techniques for 5G multicarrier systems. Due to the characteristics of the 5G application scenarios, channel estimation techniques have been tested in Orthogonal Frequency Division Multiplexing (OFDM) and Generalized Frequency Division Multiplexing (GFDM) systems. The orthogonality between subcarriers in OFDM systems permits inserting and extracting pilots without interference. However, due to pulse shaping, subcarriers in GFDM are no longer orthogonal and interfere with each other. Due to such interference, the channel estimation for GFDM is not trivial. A robust and low-complexity channel estimator can be obtained by combining a minimum mean-square error (MMSE) regularization and the basis expansion model (BEM) approach. In this work, we develop a BEM-type channel estimator along with a strategy to obtain the covariance matrix of the BEM coefficients. Simulations show that the BEM-type channel estimation shows performance close to that of the linear MMSE (LMMSE), even though there is no need to know the channel power delay profile, and its complexity is low.

Citations (1)

Summary

We haven't generated a summary for this paper yet.