Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Whittaker modules over free bosonic orbifold vertex operator algebras (1806.06133v1)

Published 15 Jun 2018 in math.RT

Abstract: We construct weak (i.e. non-graded) modules over the vertex operator algebra $M(1)+$, which is the fixed-point subalgebra of the higher rank free bosonic (Heisenberg) vertex operator algebra with respect to the $-1$ automorphism. These weak modules are constructed from Whittaker modules for the higher rank Heisenberg algebra. We prove that the modules are simple as weak modules over $M(1)+$ and calculate their Whittaker type when regarded as modules for the Virasoro Lie algebra. Lastly, we show that any Whittaker module for the Virasoro Lie algebra occurs in this way. These results are a higher rank generalization of some results by Tanabe.

Summary

We haven't generated a summary for this paper yet.