Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple weak modules for the fixed point subalgebra of the Heisenberg vertex operator algebra of rank $1$ by an automorphism of order $2$ and Whittaker vectors (1608.07890v3)

Published 29 Aug 2016 in math.QA

Abstract: Let $M(1)$ be the vertex operator algebra with the Virasoro element $\omega$ associated to the Heisenberg algebra of rank $1$ and let $M(1){+}$ be the subalgebra of $M(1)$ consisting of the fixed points of an automorphism of $M(1)$ of order $2$. We classify the simple weak $M(1){+}$-modules with a non-zero element $w$ such that for some integer $s\geq 2$, $\omega_i w\in{\mathbb C}w$ ($i=\lfloor s/2\rfloor+1,\lfloor s/2\rfloor+2,\ldots,s-1$), $\omega_{s}w\in{\mathbb C}{\times}w$, and $\omega_i w=0$ for all $i>s$. The result says that any such simple weak $M(1){+}$-module is isomorphic to some simple weak $M(1)$-module or to some $\theta$-twisted simple weak $M(1)$-module.

Summary

We haven't generated a summary for this paper yet.