Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Lip Reading: a comparison of models and an online application (1806.06053v1)

Published 15 Jun 2018 in cs.CV

Abstract: The goal of this paper is to develop state-of-the-art models for lip reading -- visual speech recognition. We develop three architectures and compare their accuracy and training times: (i) a recurrent model using LSTMs; (ii) a fully convolutional model; and (iii) the recently proposed transformer model. The recurrent and fully convolutional models are trained with a Connectionist Temporal Classification loss and use an explicit LLM for decoding, the transformer is a sequence-to-sequence model. Our best performing model improves the state-of-the-art word error rate on the challenging BBC-Oxford Lip Reading Sentences 2 (LRS2) benchmark dataset by over 20 percent. As a further contribution we investigate the fully convolutional model when used for online (real time) lip reading of continuous speech, and show that it achieves high performance with low latency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Triantafyllos Afouras (29 papers)
  2. Joon Son Chung (106 papers)
  3. Andrew Zisserman (248 papers)
Citations (111)

Summary

We haven't generated a summary for this paper yet.