Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimizing Regret of Bandit Online Optimization in Unconstrained Action Spaces (1806.05069v3)

Published 13 Jun 2018 in math.OC and cs.LG

Abstract: We consider online convex optimization with a zero-order oracle feedback. In particular, the decision maker does not know the explicit representation of the time-varying cost functions, or their gradients. At each time step, she observes the value of the corresponding cost function evaluated at her chosen action (zero-order oracle). The objective is to minimize the regret, that is, the difference between the sum of the costs she accumulates and that of a static optimal action had she known the sequence of cost functions a priori. We present a novel algorithm to minimize regret in unconstrained action spaces. Our algorithm hinges on a classical idea of one-point estimation of the gradients of the cost functions based on their observed values. The algorithm is independent of problem parameters. Letting $T$ denote the number of queries of the zero-order oracle and $n$ the problem dimension, the regret rate achieved is $O(n{2/3}T{2/3})$. Moreover, we adapt the presented algorithm to the setting with two-point feedback and demonstrate that the adapted procedure achieves the theoretical lower bound on the regret of $(n{1/2}T{1/2})$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.