Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric Exploration for Online Control (2010.13178v2)

Published 25 Oct 2020 in cs.LG, math.OC, and stat.ML

Abstract: We study the control of an \emph{unknown} linear dynamical system under general convex costs. The objective is minimizing regret vs. the class of disturbance-feedback-controllers, which encompasses all stabilizing linear-dynamical-controllers. In this work, we first consider the case of known cost functions, for which we design the first polynomial-time algorithm with $n3\sqrt{T}$-regret, where $n$ is the dimension of the state plus the dimension of control input. The $\sqrt{T}$-horizon dependence is optimal, and improves upon the previous best known bound of $T{2/3}$. The main component of our algorithm is a novel geometric exploration strategy: we adaptively construct a sequence of barycentric spanners in the policy space. Second, we consider the case of bandit feedback, for which we give the first polynomial-time algorithm with $poly(n)\sqrt{T}$-regret, building on Stochastic Bandit Convex Optimization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Orestis Plevrakis (5 papers)
  2. Elad Hazan (106 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.