Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallel Concatenation of Bayesian Filters: Turbo Filtering (1806.04632v2)

Published 12 Jun 2018 in stat.CO

Abstract: In this manuscript a method for developing novel filtering algorithms through the parallel concatenation of two Bayesian filters is illustrated. Our description of this method, called turbo filtering, is based on a new graphical model; this allows us to efficiently describe both the processing accomplished inside each of the constituent filter and the interactions between them. This model is exploited to develop two new filtering algorithms for conditionally linear Gaussian systems. Numerical results for a specific dynamic system evidence that such filters can achieve a better complexity-accuracy tradeoff than marginalized particle filtering.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube