Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Not All Attributes are Created Equal: $d_{\mathcal{X}}$-Private Mechanisms for Linear Queries (1806.02389v2)

Published 6 Jun 2018 in stat.ML and cs.LG

Abstract: Differential privacy provides strong privacy guarantees simultaneously enabling useful insights from sensitive datasets. However, it provides the same level of protection for all elements (individuals and attributes) in the data. There are practical scenarios where some data attributes need more/less protection than others. In this paper, we consider $d_{\mathcal{X}}$-privacy, an instantiation of the privacy notion introduced in \cite{chatzikokolakis2013broadening}, which allows this flexibility by specifying a separate privacy budget for each pair of elements in the data domain. We describe a systematic procedure to tailor any existing differentially private mechanism that assumes a query set and a sensitivity vector as input into its $d_{\mathcal{X}}$-private variant, specifically focusing on linear queries. Our proposed meta procedure has broad applications as linear queries form the basis of a range of data analysis and machine learning algorithms, and the ability to define a more flexible privacy budget across the data domain results in improved privacy/utility tradeoff in these applications. We propose several $d_{\mathcal{X}}$-private mechanisms, and provide theoretical guarantees on the trade-off between utility and privacy. We also experimentally demonstrate the effectiveness of our procedure, by evaluating our proposed $d_{\mathcal{X}}$-private Laplace mechanism on both synthetic and real datasets using a set of randomly generated linear queries.

Summary

We haven't generated a summary for this paper yet.