Flexible shrinkage in high-dimensional Bayesian spatial autoregressive models (1805.10822v1)
Abstract: This article introduces two absolutely continuous global-local shrinkage priors to enable stochastic variable selection in the context of high-dimensional matrix exponential spatial specifications. Existing approaches as a means to dealing with overparameterization problems in spatial autoregressive specifications typically rely on computationally demanding Bayesian model-averaging techniques. The proposed shrinkage priors can be implemented using Markov chain Monte Carlo methods in a flexible and efficient way. A simulation study is conducted to evaluate the performance of each of the shrinkage priors. Results suggest that they perform particularly well in high-dimensional environments, especially when the number of parameters to estimate exceeds the number of observations. For an empirical illustration we use pan-European regional economic growth data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.