Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery? (1805.10251v2)

Published 25 May 2018 in cs.LG, math.OC, and stat.ML

Abstract: When the linear measurements of an instance of low-rank matrix recovery satisfy a restricted isometry property (RIP)---i.e. they are approximately norm-preserving---the problem is known to contain no spurious local minima, so exact recovery is guaranteed. In this paper, we show that moderate RIP is not enough to eliminate spurious local minima, so existing results can only hold for near-perfect RIP. In fact, counterexamples are ubiquitous: we prove that every x is the spurious local minimum of a rank-1 instance of matrix recovery that satisfies RIP. One specific counterexample has RIP constant $\delta=1/2$, but causes randomly initialized stochastic gradient descent (SGD) to fail 12% of the time. SGD is frequently able to avoid and escape spurious local minima, but this empirical result shows that it can occasionally be defeated by their existence. Hence, while exact recovery guarantees will likely require a proof of no spurious local minima, arguments based solely on norm preservation will only be applicable to a narrow set of nearly-isotropic instances.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com