Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sign-RIP: A Robust Restricted Isometry Property for Low-rank Matrix Recovery (2102.02969v3)

Published 5 Feb 2021 in cs.LG and stat.ML

Abstract: Restricted isometry property (RIP), essentially stating that the linear measurements are approximately norm-preserving, plays a crucial role in studying low-rank matrix recovery problem. However, RIP fails in the robust setting, when a subset of the measurements are grossly corrupted with noise. In this work, we propose a robust restricted isometry property, called Sign-RIP, and show its broad applications in robust low-rank matrix recovery. In particular, we show that Sign-RIP can guarantee the uniform convergence of the subdifferentials of the robust matrix recovery with nonsmooth loss function, even at the presence of arbitrarily dense and arbitrarily large outliers. Based on Sign-RIP, we characterize the location of the critical points in the robust rank-1 matrix recovery, and prove that they are either close to the true solution, or have small norm. Moreover, in the over-parameterized regime, where the rank of the true solution is over-estimated, we show that subgradient method converges to the true solution at a (nearly) dimension-free rate. Finally, we show that sign-RIP enjoys almost the same complexity as its classical counterparts, but provides significantly better robustness against noise.

Citations (10)

Summary

We haven't generated a summary for this paper yet.