Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalizing Tree Probability Estimation via Bayesian Networks (1805.07834v2)

Published 20 May 2018 in stat.AP

Abstract: Probability estimation is one of the fundamental tasks in statistics and machine learning. However, standard methods for probability estimation on discrete objects do not handle object structure in a satisfactory manner. In this paper, we derive a general Bayesian network formulation for probability estimation on leaf-labeled trees that enables flexible approximations which can generalize beyond observations. We show that efficient algorithms for learning Bayesian networks can be easily extended to probability estimation on this challenging structured space. Experiments on both synthetic and real data show that our methods greatly outperform the current practice of using the empirical distribution, as well as a previous effort for probability estimation on trees.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube